Surface Water Management Plan Dyce 2016-2022

Surface Water Management Plan Dyce

Contents Page

Background to SWMP	3
Dyce SWMP Area	5
Assessment of Current Pluvial Flooding	6
Dyce PVA Catchment description	7
Dyce Sewer system description	
Historical flooding	8
SWMP High Level Objectives	9
Current Actions in place	9
List of SWMP Objectives	10
2016-2022 SWMP Management Action	12
2016-2022 SWMP Maintenance Action	
2016-2022 SWMP Investment Action	
Appendix A	14
CLUSTER 1, DYCE SWMP INFORMATION SHEET	15
CLUSTER 2, DYCE SWMP INFORMATION SHEET	16
CLUSTER 3, DYCE SWMP INFORMATION SHEET	17
CLUSTER 4, DYCE SWMP INFORMATION SHEET	18
CLUSTER 5, DYCE SWMP INFORMATION SHEET	19
CLUSTER 6, DYCE SWMP INFORMATION SHEET	20
CLUSTER 7, DYCE SWMP INFORMATION SHEET	21
CLUSTER 8, DYCE SWMP INFORMATION SHEET	22
CLUSTER 9, DYCE SWMP INFORMATION SHEET	23

Background to SWMP

The Flood Risk Management (Scotland) Act 2009 (the FRM Act) establishes a flood risk management planning process for the assessment and sustainable management of flood risks with the aim of reducing the adverse consequences of flooding from all sources, including surface water flooding.

The surface water management plan will help to deliver the Scottish Government outcomes for sustainable flood risk management:

- 1. A reduction in the number of people, homes and property at risk of flooding as a result of public funds being invested in actions that protect the most vulnerable and those areas at greatest risk of flooding
- 2. Rural and urban landscapes with space to store water and slow down the progress of floods
- 3. Integrated drainage that decreases burdens on our sewer systems while also delivering reduced flood risk and an improved water environment
- 4. A well informed public who understand flood risk and adopt actions to protect themselves, their property or their businesses
- 5. Flood management actions undertaken that will stand the test of time and be adaptable to future changes in the climate

Surface water flooding is a significant problem in Scotland. The National Flood Risk Assessment (NFRA) published by SEPA in December 2011 estimated that around 125,000 properties are at risk of flooding from all sources. This represents 1 in 22 homes and 1 in 13 businesses with the average annual cost of damages estimated to be between £720 million and £850 million. The NFRA estimated that surface water accounts for approximately 38% of these predicted impacts in Scotland.

The term surface water flooding is often used to describe flooding from high intensity rainfall events that cause flooding from rainfall runoff flowing and ponding on the ground and also flooding from sewers and other artificial drainage systems such as road drainage when the capacity of drainage systems is exceeded. It is distinct from flooding that occurs from larger rivers and the sea. In reality the general term of surface water flooding is often a complex interaction of many sources of flooding, including flooding from the natural (e.g. smaller watercourses) and artificial (e.g. sewers) drainage systems and direct inundation of areas from surface water runoff.

Other sources of flooding can exacerbate surface water flooding, for example where high sea levels or river levels prevent drainage systems from discharging freely. The term surface water flooding for the purpose of this Plan includes flooding from the following sources:

• Pluvial flooding – flooding as a result of rainfall runoff flowing or ponding over the ground before it enters a natural (e.g. watercourse) or artificial (e.g. sewer) drainage

- system or when it cannot enter a drainage system (e.g. because the system is already full to capacity or the drainage inlets have a limited capacity).
- Sewer flooding and other artificial drainage system flooding flooding as a result of the sewer or other artificial drainage system (e.g. road drainage) capacity being exceeded by rainfall runoff or the drainage system cannot discharge water at the outfall due to high water levels (river and sea levels) in receiving waters.
- Groundwater flooding flooding as a result of the water table rising to the surface.
- Flooding from small urban watercourses (including culverted watercourses) flooding which occurs from small watercourses (including culverted watercourses) that receive most of their flow from inside the urban area and perform an urban drainage function. It should be noted for consideration that SEPA will not be assessing flood risk from watercourses with a catchment area less than 3km².

The purpose of a Surface Water Management Plan (SWMP) is to provide sufficient information to support the development of an agreed strategic approach to the management of surface water flood risk within a given geographical area by ensuring the most sustainable measures are identified (i.e. the most economically, socially and environmentally beneficial measures). SWMPs can be implemented at any scale and should follow a risk based approach, where most effort should be focused in areas of highest risk and where the most complex problems exist. SWMPs can therefore vary in detail to suit local requirements and the amount of detail that a SWMP contains should be proportionate to the surface water flood risk and the complexity of the problem.

Dyce SWMP Area

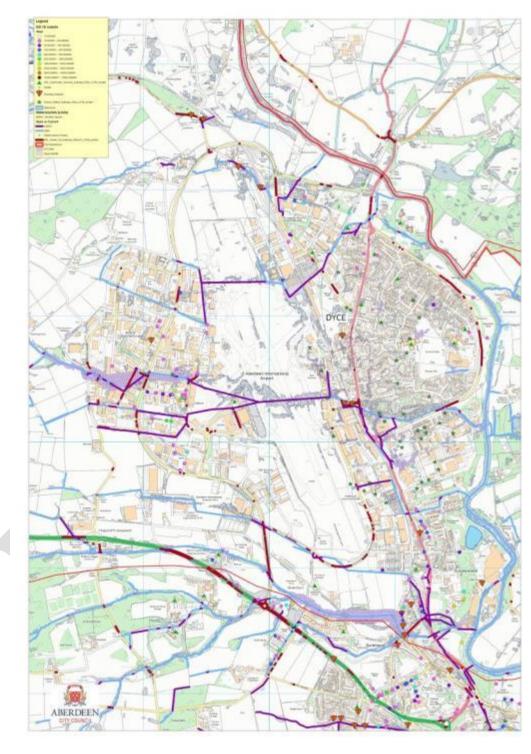


Fig.1

Assessment of Current Pluvial Flooding

Within the Dyce SWMP catchment the current assessed cost due to pluvial flooding from minor catchments has been assessed below. The information has been taken from SEPA Pluvial map data and the ICS model. The PVA estimates the damages from surface water flooding to be:-

PVA	PVA			Total Surface
ID	reference	Easting	Northing	EAD
48	06/15	387998	812360	£855,000

Initial assessment of the Dyce SWMP highlights 9 areas of significant risk looking based on the assessment of all of the current flooding data available. The areas at significant risk from over land flooding are:-

- Cluster 1: Tillybrig
- Cluster 2: Pitmedden Road
- Cluster 3: Far Burn @ Kirkhill Industrial Estate
- Cluster 4: Far Burn @ Parkhill
- Cluster 5: Green Burn Stoneywood
- Cluster 6: Green Burn through AECC
- Cluster 7: Polo Gardens
- Cluster 8: Greenburn Drive/Greenburn Road/Waterton Road
- Cluster 9: Greenburn Drive/Bankhead

The damages and properties at risk for each of these cluster areas is shown in the table below. For details on each cluster including flood risk maps see appendix B

				Weighted AA	AD Approac	:h	
Location	Assessment Type	Residential Property		Flood Disadvantage	Utilities at risk	Community facilities at risk	AAD for Res Properties
Cluster 1	SEPA/ Flood Records	4	0	Average	0	0	£47,857.90
Cluster 2	ICS/Flood Records/SEPA	7	15	Average	2	0	£83,751.33
Cluster 3	ICS/Flood Records/SEPA	0	65	Average	6	0	£0.00
Cluster 4	ICS/Flood Records/SEPA	141	7	Relatively Low	4	0	£1,686,991.10
Cluster 5	ICS/Flood Records/SEPA	19	4	Average	0	0	£227,325.04
Cluster 6	ICS/SEPA	19	6	Relatively Low	0	2	£227,325.04
Cluster 7	ICS /Flood Records	33	0	Average	0	0	£394,827.71
Cluster 8	ICS/Flood Records/SEPA	11	0	Average	0	0	£131,609.24
Cluster 9	ICS	107	11	Average	2	0	£1,280,198.92
				Tot	al Dyce AA	D	£4,079,886.29

Dyce PVA Catchment description

The Dyce SWMP catchment drains an area of 13km² into the River Don. The Dyce SWMP catchment is an urban area with some small areas being agricultural land. The surface water drainage system is a combination of both culverted and open watercourses. There are 3 Burns that run through the main urban area and these are Far Burn, North Kirkhill Burn and Green Burn. There is approximately 21km of open watercourse and 12km of culverted water course within the catchment.

There are no reservoirs located within the PVA catchment which have a direct impact on the surface water system

Dyce Sewer system description

This section to be filled in by Scottish water

Historical flooding

The following is the current list which identifies pluvial flooding from records which ACC have access to.

Flooding highlighted from the ACC data set

Date	STREET_NAM	FLOODNO	TYPE_CAUSE	CAUSE_COMM
07/02/1978	Greenburn Road	58	Road Drainage	Ponding occuring around 124/128. Gullies do not drain.
22/10/2002	Pitmedden Rd	23	Surface runoff	Road badly flooded due to poor gully outfall (this assumption was not correct - see incident on 21st November 2002)
				Dip in bottom of road gathered water renedering it impassible. Burn overflowed near the scout hut due to blocked gullies and flowed down waterton road to collect
22/10/2002	Greenburn Drive	26	Surface runoff	at lowest point by bridge. Flooded elderly residential home.
21/11/2002	Pitmedden Rd	28	Surface runoff	Carrier drain from gully blocked with effluent from Tillybrig Cottage - illegal connection. Carrier drain replaced and illegal connection removed
2005 - 07	Inverurie Road	143	Fluvial	Choked drainage ditches in forestry area. Extent of flooding not recorded.
2005 - 07	Union Row	161	Surface Runoff	Possible damage or insufficient drainage. Extent of flooding not recorded.
2005 - 07	Polo Gardens	165	Surface Runoff	Blockages to gullies and pipework. Extent of flooding not recorded.
2007 - 09	Farburn Terrace	183	Surface Runoff	Overspill of nearby watercourse. Blocked Heck, damaged or blocked gullies. Extent of flooding not recorded.
2007 - 09	Pitmedden Road, Beidleston	186	Assumed Fluvial	Water course with Network Rail Boundary blocked.
2007 - 09	Howe Moss Drive	190	Surface Runoff	Industrial unit to rear of units 1-9 Airport Commerce. Inadequate capacity in culver through car park.
2007 - 09	Union Road	198	Surface Runoff	Flooding to property. Gullies replaced afterwards.
2007 - 09	Pitmedden Road	209	Surface Runoff	Gullies blocked flooding road and properties. Inadequate capacity. New drainage system required.
2007 - 09	Lade Crescent	219	Surface Runoff	Properties flooded. Cause not recorded nut Network Rail to investigate.
2003 - 05	Farburn Terrace	129	Assumed Fluvial	Debris accumulation at heck resulted in flooding.
				Approx 1/4 mile on Kinaldie road from Dyce. 1 ile from AB21 0HD. 12" deep flood water. Flooding just past the junction to Dyce cemetery. Road flooded for several
	Pitmedden Road		Fluvial	days. Soak away full. Needs pump
22/12/2012	Waterton Road	251		Supplied sandbags
22/12/2012	Waterton Road	264	Burn overtopping	Possibility of heightening the edge of the burn at the rear of the bowling green to help keep water in the burn.
21/12/2012	Stoneywood Terrace	287	Fluvial	Sandbags supplied x90
23/12/2012	Crossgates Bucksburn	323	Road Drainage	Drain overflowing in communal grass area in middle of houses.

Flooding highlighted from the Scottish Water data set

There are no records on any sewer flooding within the Dyce SWMP area.

SWMP High Level Objectives

Within this SWMP area there are 3 high level objectives that we intend to achieve. These are:-

AVOID This objective is to avoid surface water flooding where possible and can be

achieved via a number of different ways. These can be as simple as no building in the area, to undertaking flood prevention schemes in the area.

PROTECT This objective is to use methods that protect using systems that are not directly

related to the area and increase water levels elsewhere, such as storage ponds

or increasing flood plain areas.

PREPARE This objective is to prepare people for what happens in a flood and what

measures they can undertake. It will also include active maintenance that is required in preparation for flooding. This option will not prevent the flooding

from happening, but will reduce the severity of the flood.

Aberdeen City Council's longer term aspiration is to remove all properties out of 1/30+cc Flood risk by 2028 and 1/200+cc by 2040

Current Actions in place

Current actions are tasks which are done as part of managing the flood risk in this SWMP area.

- Review of all planning applications in line with the local plan and ensure they are not increasing risk in SWMP area.
- Reactive gully maintenance
- Investigation into all reported flooding incidents
- All watercourses mapped in GIS

List of SWMP Objectives

Description of issues	High Level SWMP Objective	Local SWMP Objective	Actions
	Prepare	Manage Flood risk in SWMP area	Routine Principal inspection all of water course
	Prepare	Manage Flood risk in SWMP area	Intermediate inspection of high risk water course
Management	Prepare	Manage Flood risk in SWMP area	Create inspection regime and baseline for all water course
of DYCE SWMP	Prepare	Manage Flood risk in SWMP area	Management of GIS data. This is to include all Flood data, water course data and works undertaken on watercourse
	Prepare	Manage Flood risk in SWMP area	Yearly review of SWMP
	Prepare	Manage Flood risk in SWMP area	Update of ICS model yearly
	Avoid	Reduced Flood Risk in SWMP area	Ensure that all works within this area meet the planning guidance note
	Protect	Reduced Flood Risk in SWMP area	All gullies to be cleaned on a yearly basis
	Protect	Reduced Flood Risk in SWMP area	Increased street cleaning on tree lined roads from September to December
Maintenance	Prepare	Manage Flood risk in SWMP area	Yearly community engagement event to highlight the flooding risk and what can be done by locals to reduce this.
of DYCE SWMP	Protect	Manage Flood risk in SWMP area	Create list of high risk roads/gullies that require increased emptying
	Protect	Reduced Flood Risk in SWMP area	Promote and Maintain PLP grant scheme for all at-risk properties
	Protect	Reduced Flood Risk in SWMP area	Review all Local Development sites in ICS model to assess long term risk they pose
	Protect	Reduced Flood Risk in SWMP area	Increased gullies clearing in autumn on high risk gullies

	Avoid	Reduce Flood Risk within Cluster 6	Undertake Flood study within Cluster 6. Study to include Long List and Short List of options and proposed solution
	Avoid	Reduce Flood Risk within Cluster 4	Undertake Flood study within Cluster 4. Study to include Long List and Short List of options and proposed solution
	Avoid	Reduce overall SWMP Flood Risk	Update ICS model to FEH 13 Flood Risk
	Avoid	Reduced overall SWMP Flood Risk	Retrofit SUDS to ACC community buildings
	Avoid	Reduce overall SWMP Flood Risk	Retrofit SUDS to ACC residential property
	Avoid	Reduce Flood Risk within Cluster 1	Undertake Flood study around the area highlighted within Cluster 1. Study to include Long List and Short List of options and proposed solution
Capital Works	Avoid	Reduce Flood Risk within Cluster 2	Undertake Flood study around the area highlighted within Cluster 2. Study to include Long List and Short List of options and proposed solution
Capital Works	Avoid	Reduce Flood Risk within Cluster 3	Undertake Flood study within Cluster 3. Study to include Long List and Short List of options and proposed solution
	Avoid	Reduce Flood Risk within Cluster 5	Undertake Flood study within Cluster 5. Study to include Long List and Short List of options and proposed solution
	Avoid	Reduce Flood Risk within Cluster 7	Undertake Flood study within Cluster 7. Study to include Long List and Short List of options and proposed solution
	Avoid	Reduce Flood Risk within Cluster 8	Undertake Flood study within Cluster 8. Study to include Long List and Short List of options and proposed solution
	Avoid	Reduce Flood Risk within Cluster 9	Undertake Flood study within Cluster 9. Study to include Long List and Short List of options and proposed solution
	Avoid	Reduced overall flood risk in SWMP cluster Areas	Undertake investment scheme which has been highlighted in flood studies. Scheme to have minimum level of protection of 1% risk of probability of flooding and have a CBR greater than 1

2016-2022 SWMP Management Action

Below are the actions which will be done routinely during every SWMP cycle.

Description of issues	High Level SWMP Objective	Local SWMP Objective	Actions	Work stream	Cycle Spend -	Owner 🔻	Priority -
	Prepare	Manage Flood risk in SWMP area	Routine Principal Inspection all of water course	Inspection	2016- 2022	ACC SCF	Medium
	Prepare	Manage Flood risk in SWMP area	Intermediate inspection of high risk water course	Inspection	2016- 2022	ACC SCF	Medium
Management	Prepare	Manage Flood risk in SWMP area	Create inspection regime and baseline for all water course	Baseline Setting	2016- 2022	ACC SCF	high
of DYCE SWMP	Prepare	Manage Flood risk in SWMP area	Management of GIS data. This is to include all Flood data, water course data and works undertaken on watercourse	Office	All	ACC SCF	Medium
	Prepare	Manage Flood risk in SWMP area	Yearly review of SWMP	Office	All	ACC SCF	low
	Prepare	Manage Flood risk in SWMP area	Update of ICS model yearly	Office	All	ACC/ Scottish	low

2016-2022 SWMP Maintenance Action

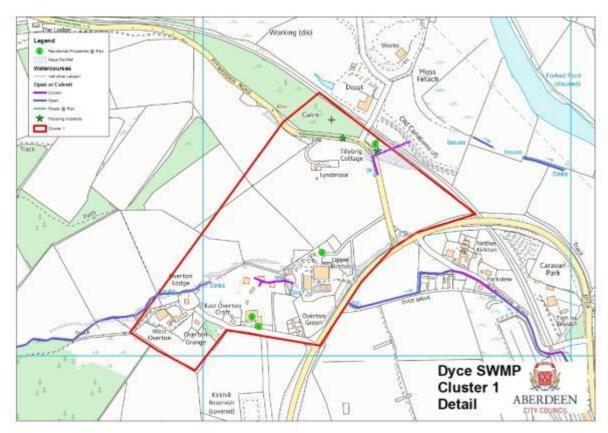
Below are the actions which will be done routinely during every SWMP cycle.

Description of	High Level SWMP Objective	Local SWMP Objective	Actions	Work stream	Cycle Spend -	Owner 🔻	Priority
	Avoid	Reduced Flood Risk in SWMP area	Ensure that all works within this area meet the planning guidance note	Planning	All	ACC Planning	Medium
	Protect	Reduced Flood Risk in SWMP area	All gullies to be cleaned on a yearly Basis	Maintain	All	ACC Roads	Medium
	Protect	Reduced Flood Risk in SWMP area	increased street cleaning on tree lined roads from September to December	Maintain	All	ACC Roads	high
Maintenance of	Prepare	Manage Flood risk in SWMP area	Yearly community engagement event to highlight the flooding risk and what can be done by locals to reduces this.	Community	All	ACC SCF	Medium
DYCE SWMP	Protect		Create list of high risk roads/gullies that require increased emptying	Baseline Setting	2016- 2022	ACC SCF	high
	Protect		Promote and Maintain PPL grant scheme for all risk Properties	Newbuild	2016- 2022	ACC SCF	Medium
	Protect	Reduced Flood Risk in SWMP area	Review All Local Developments sites in ICS model to assess long term risk they pose	Maintain	all	ACC SCF	low
	Protect	Reduced Flood Risk in SWMP area	Increased gullies clearing in autumn on high risk gullies	Maintain	All	ACC Roads	high

2016-2022 SWMP Investment Action

Below are the actions which will be done routinely during every SWMP cycle.

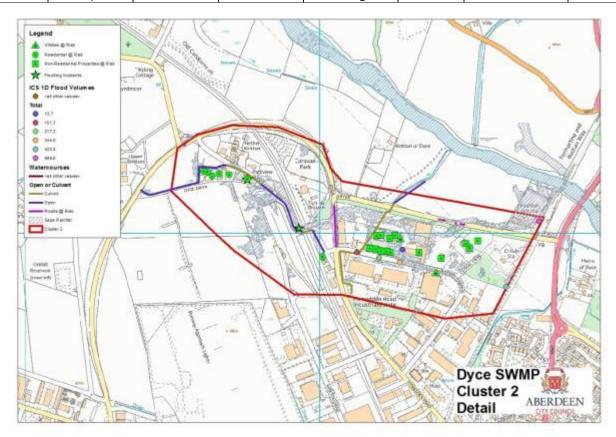
Description of issues	High Level SWMP Objective	Local SWMP Objective	Actions	Work stream	Cycle Spend	Owner -	Priority S
	Avoid	Reduce Flood Risk within Cluster 6	Undertake Flood study within Cluster 6. Study to include Long List and Short List of options and proposed solution	Baseline Setting	2016- 2022	ACC/ Scottish Water	high
	Avoid	Reduce Flood Risk within Cluster 4	Undertake Flood study d within Cluster 4. Study to include Long List and Short List of options and proposed solution	Baseline Setting	2016- 2022	ACC/ Scottish Water	high
	Avoid	Reduce overall SWMP Flood Risk	update ICS model to FEH 13 Flood Risk	Baseline Setting	2016- 2022	ACC/ Scottish Water	Medium
	Avoid	Reduce Flood Risk within Cluster 1	Undertake Flood study around the area highlighted within Cluster 1. Study to include Long List and Short List of options and proposed solution	Baseline Setting	2016- 2022	ACC SCF	high
	Avoid	Reduce Flood Risk within Cluster 2	Undertake Flood study around the area highlighted within Cluster 2. Study to include Long List and Short List of options and proposed solution	Baseline Setting	2016- 2022	ACC SCF	high
Capital Works	Avoid	Reduce Flood Risk within Cluster 3	Undertake Flood study within Cluster 3. Study to include Long List and Short List of options and proposed solution	Baseline Setting	2016- 2022	ACC SCF	high
	Avoid	Reduce Flood Risk within Cluster 5	Undertake Flood study within Cluster 5. Study to include Long List and Short List of options and proposed solution	Baseline Setting	2016- 2022	ACC SCF	high
	Avoid	Reduce Flood Risk within Cluster 7	Undertake Flood study within Cluster 7. Study to include Long List and Short List of options and proposed solution	Baseline Setting	2016- 2022	ACC SCF	high
	Avoid	Reduce Flood Risk within Cluster 8	Undertake Flood study within Cluster 8. Study to include Long List and Short List of options and proposed solution	Baseline Setting	2016- 2022	ACC SCF	high
	Avoid	Reduce Flood Risk within Cluster 9	Undertake Flood study within Cluster 9. Study to include Long List and Short List of options and proposed solution	Baseline Setting	2016- 2022	ACC SCF	high
	Avoid	Reduced overall flood risk in SWMP cluster Areas	Undertake investment scheme which have been highlighted in flood studies. Scheme to have minimum level of protection of 1% risk of probability of flooding and have a CBR greater than 1	Newbuild	2022- 2028	ACC/ Scottish Water	medium


Appendix A

CLUSTER 1, DYCE SWMP INFORMATION SHEET

Location	Assessment Type	Residential Property	Non Residential	Flood Disadvantage	Utilities at risk	Community facilities at risk	AAD Res Properties
	SEPA/ Flood						
Cluster 1	Records	4	20		2	0	£47857.90

Flooding Records:-28 – Surface Run off, Pitmedden Rd 240 – Fluvial, Pitmedden Rd 53 – Surface Run off, Pitmedden Rd Possible causes of Flooding:-

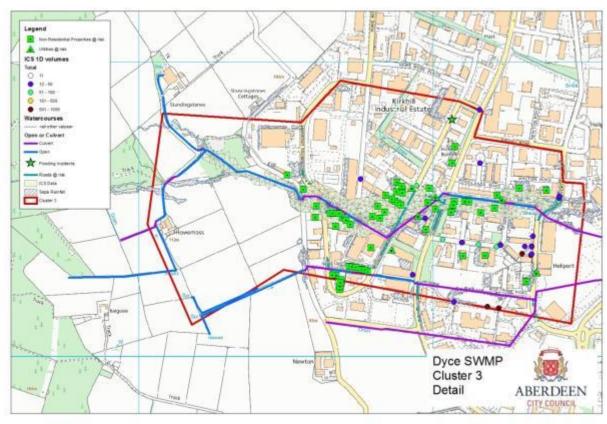

- Potential over topping of Overturn Burn
- Blocked Gullies Pitmedden Road
- Soakaway Failure Pitmedden Road
- Surface Run off AWPR Build

- NFM on Overton Burn upstream if West Overton
- Increased Gullies on Pitmedden Road
- Desilting of Soakaway Pipe Pitmedden Road
- Suds Pond between Pitmedden Road and Railway Line
- PLP

CLUSTER 2, DYCE SWMP INFORMATION SHEET

Location	Assessment Type	Residential Property	Non Residential	Flood Disadvantage	Utilities at risk	Community facilities at risk	AAD Res Properties
	ICS/ Flood						
	Records/						
Cluster 1	Sepa	7	15	Average	2	0	£85751.33

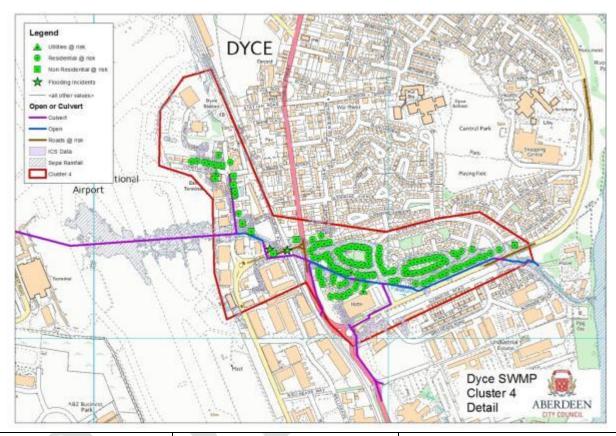
Flooding Records:-209 – Surface Run off, Pitmedden Rd 186 – Fluvial, Pitmedden Rd Possible causes of Flooding:-


- Potential over topping of Overton Burn
- Blocked Gullies Pitmedden Road
- Block Hake Pitmedden Road
- Surface Run off with Pitmedden Industrial Estate
- Sewer overflow within Pitmedden Industrial Estate

- NFM on Overton Burn upstream
- Review of Sewer model
- Sewer upsizing
- Surface water separation
- Retrofit Suds
- Increase Gully Capacity
- Underground storage
- Above ground storage

CLUSTER 3, DYCE SWMP INFORMATION SHEET

	Assessment	Residential	Non	Flood	Utilities	Community	AAD Res
Location	Туре	Property	Residential	Disadvantage	at risk	facilities at risk	Properties
	ICS/ Flood						
	Records/						
Cluster 1	Sepa	0	65	Average	6	0	£0



Flooding Pocords:	Possible sauses of Flooding:	Long List of Options:-		
Flooding Records:-	Possible causes of Flooding:-	Long List of Options:-		
190 – Howe Moss Drive	 Over topping. 	• NFM		
	 Blocked Gullies 	 Upstream storage 		
	Blocked Hake	Revised Hake Design		
	 Surface Water Sheet Flow 	 Surface water separation 		
	Failure of sewer system	Sewer upsizing		
		 Underground storage 		
		Retro Fit Suds		
		In line storage		

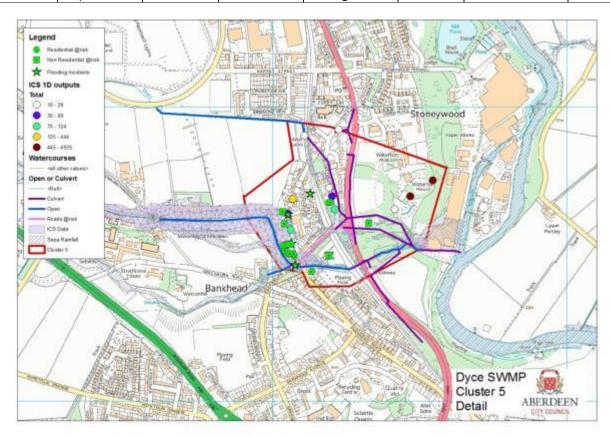
CLUSTER 4, DYCE SWMP INFORMATION SHEET

Location	Assessment Type	Residential Property	Non Residential	Flood Disadvantage	Utilities at risk	Community facilities at risk	AAD Res Properties
	ICS/ Flood						
	Records/						
Cluster 1	Sepa	141	7	Relatively Low	4	0	£1,686,991

Flooding Records:-129 - Fluvial, Farburn Terrace

129 - Fluvial, Farburn Terrace 183 – Surface Runoff, Farburn Terrace

Possible causes of Flooding:-

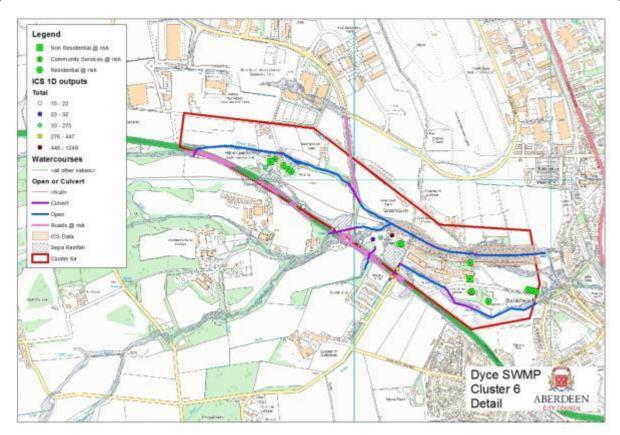

- Blocked Hake
- Surface Run off
- Lack of Gullies
- Capacity in Sewer network
- Capacity in watercourse network

- Surface Water Separation
- Increased Pipe Capacity
- Online Storage
- Off line Storage
- Retro Fit Suds
- BGI
- PLP
- Deculverting

CLUSTER 5, DYCE SWMP INFORMATION SHEET

Location	Assessment Type	Residentia I Property	Non Residential	Flood Disadvantage	Utilities at risk	Community facilities at risk	AAD Res Properties
	ICS/ Flood						
	Records/						
Cluster 5	Sepa	19	4	Average	0	0	£227,325

Flooding Records:-251- ?, Waterton Road 264- Overtopping Burn, Waterton Road 26- Surface Run Off, Greenburn Drive 219- Surface Run Off Lade Crescent, Possible causes of Flooding:-

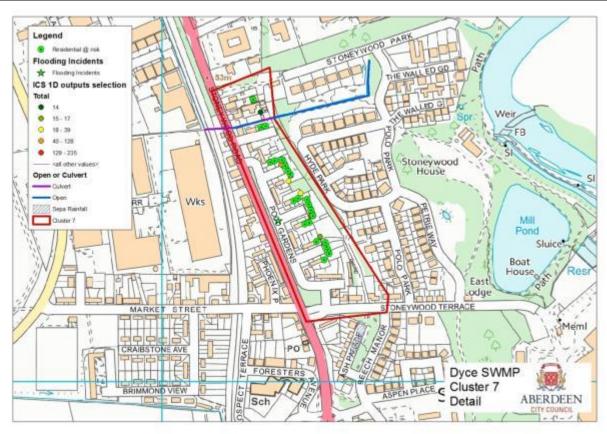

- Blocked Hake
- Over topping of Burn
- Channel Morphology
- Blocked Gullies
- Sewer System capacity

- Surface Water Separation
- Increased Pipe Capacity
- Online Storage
- Off line Storage
- Retro Fit Suds
- BGI
- PLP
- Channel realignment

CLUSTER 6, DYCE SWMP INFORMATION SHEET

Location	Assessment Type	Residential Property	Non Residential	Flood Disadvantage	Utilities at risk	Community facilities at risk	AAD Res Properties
Cluster 6	ICS/ Sepa	19	6	Relatively Low	0	2	

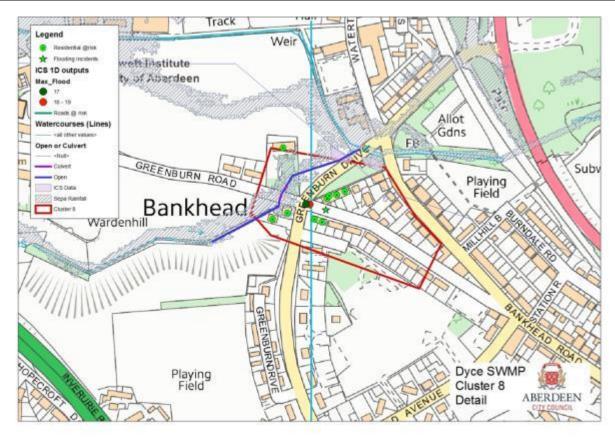
Flooding Records:-No Flooding Recorded Possible causes of Flooding:-


- Burn over toping
- Blocked Screens
- Channel Morphology

- Online Storage
- Off line Storage
- Channel realignment

CLUSTER 7, DYCE SWMP INFORMATION SHEET

Location	Assessment Type	Residential Property	Non Residential	Flood Disadvantage	Utilities at risk	Community facilities at risk	AAD Res Properties
	ICS /Flood						
Cluster 7	Records	33	0	Average	0	0	£394,827

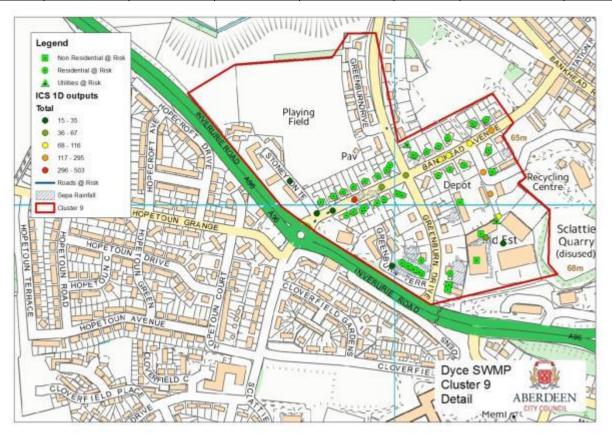


Flooding Records:-	Possible causes of Flooding:-	Long List of Options:-
165 – Surface Run off, Polo	Sewer Capacity	Review Hydraulic Model
Gardens		Sewer Upgrade
		Surface Water Separation

CLUSTER 8, DYCE SWMP INFORMATION SHEET

Location	Assessment Type	Residential Property	Non Residential	Flood Disadvantage	Utilities at risk	Community facilities at risk	AAD Res Properties
	ICS/ Flood Records/						
Cluster 8	Sepa	11	0	Average	0	0	£131,609

Flooding Records:58 – Roads Drainage,
Greenburn Road


Possible causes of Flooding:
• Sewer Capacity
• Surface Run off

• Surface Run off
• Sewer Capacity Increase

CLUSTER 9, DYCE SWMP INFORMATION SHEET

Location	Assessment Type	Residential Property	Non Residential	Flood Disadvantage	Utilities at risk	Community facilities at risk	AAD Res Properties
Cluster 9	ICS	107	11	Average	2	0	

Flooding Records:No Records

Sewer Capacity
Surface Run off

Possible causes of Flooding:Review Hydraulic Model
Sewer Upgrade
Surface Water Separation